

THOË-S : AN INTERACTIVE VERSION OF THE DGT AUTOSAMPLER DESIGNED TO RECORD TIME SERIES OF POLLUTANTS CONCENTRATIONS.

EXAMPLE OF TRACE METAL MONITORING IN A RIVER IMPACTED BY MINING

Benjamin MORETON, Jean-Michel FERNANDEZ, Celine POUSSE AEL/LEA, Promenade Laroque, BPA5, 98848 Nouméa, New Caledonia --- info@ael-environnement.nc

Introduction

The use of passive samplers, in particular DGT[®] devices, to determine concentrations of dissolved metals in waters are becoming more common-place for use in regulatory monitoring. DGT offers improvements in data quality for:

- monitoring long-term trends
- measurement of riverine fluxes

Methodology

- Time series of Cd, Cr(VI), Co, Cu, Fe, Mn, Ni, Pb, Zn concentrations (sequential) exposures of doubled layered DGT's);
- Manuel deployment of DGT devices;

for regulatory monitoring tasks

Results

Co

Cr(VI)

Case study: Monitoring two rivers, impacted and not impacted by mining activities

Sampling frequency : 3 days

Passive

sampling schedule 24/02/22

01/04/22

12

Continuous recording of temperature and pressure (relative water level)

Concentration (µg/L) time series in two rivers Kwé and Trou-Bleu

- Co and Mn: robust correlation (0,86<R²<0,97) rainfall/concentration for both of the 2 catchments;
- Ni: similar concentrations for the entire sampling period, variation is limited;

Explanation

Solubilisation of Fe, Mn and Co and Ni from **Yellow Laterites** (Goethite/Gibbsite). High content in Cr(III) that is oxydized by Mn(III/IV) into Cr(VI)* in the permanent water table.

Leaching of deeper opencast layers mined in the

 $Cr(OH)_{3 (aq)} + 3 MnOOH_{(s)} + 4 H^{+}_{(aq)} \rightarrow CrO_{4}^{2-}_{(aq)} + 3 Mn^{2+}_{(aq)} + 5 H_{2}O$ oxydation de Cr(III) par Mn(III)

 $2 \operatorname{Cr}(OH)_{3 (aq)} + 3 \operatorname{MnO}_{2 (s)} + 2 \operatorname{H}^{+}_{(aq)} \rightarrow 2 \operatorname{CrO}_{4}^{2-}_{(aq)} + 3 \operatorname{Mn}^{2+}_{(aq)} + 4 \operatorname{H}_{2}O$ oxydation de Cr(III) par Mn(IV)

- Zn: no variation in Kwé river but unexpected correlated concentration with rainfall (R²=0,88) in Trou-Bleu basin.
- Cr(VI): concentrations up to 10 times higher in Kwé river compared with Trou-Bleu river.

Significant improvement of the monitoring with sequential passive sampling, but how to resolve :

Combined diagram of daily cumulative precipitation, water height, as well as concentrations of Co, Mn, Ni, Fe and Cr(VI) measured in the dissolved fraction in the Kwé River.

Main conclusions

Innovation/ improvements

OBJECTIVES: Monitoring/research study:

- of the coastal fringe (0-100 m)
- of continental freshwater (rivers, lakes)

Main characteristics

- Programming/connection: WiFi/Bluetooth and USB C
- Number of measurement steps: 12 (possibility of triplicates)
- Autonomy: 1 year
- Immersion depth: up to 100 m

Separate battery box with manual opening

Cost: Reduce monitoring burden (logistics)

site accessibility difficulties

Multiple options for mooring

Improved hydrodynamics with horizontally positioned new electronics and motor

Solution

*Fandeur et al, 2009

THOËS

Main innovations:

- Optimization of the water flow in contact with the DGT
- 4G communication (PC and Smartphone)
- Remote interrogation by the operator
- (Re)programming/data transfer
- Acquisition of physico-chemical parameters (P, T°C) and capability of a CTD probe connexion
- GPS positioning
- Simplification of assembly

Carousel for standard DGT devices and Tracescense

www.thoe-monitoring.com

